
Improving Gnutella Search Algorithms

through Epidemic Dissemination

Holger Kampffmeyer

supervised by Cecilia Mascolo

Computer Science Department,
University College London

March 23, 2006

This report is submitted as part requirement for the MSci Degree in Com-
puter Science at University College London. It is substantially the result of
my own work except where explicitly indicated in the text. The report may
be freely copied and distributed provided the source is explicitly acknowl-
edged.

1



Abstract

Search algorithms in unstructured P2P networks such as Gnutella
use flooding-based techniques for communication and as a consequence,
they produce high message overhead. More dynamic algorithms such
as Gnutella’s Dynamic Query Protocol take into account the user’s
desired number of results and network topology properties to increase
scalability. However, these algorithms only work well for popular
files and often fail in locating rare content. Proposed structured
approaches such as DHTs are good in finding rare files, but due to
their significant overhead and problems with high network fluctua-
tions, they are not very applicable for finding popular content.

In this report, we propose a search algorithm based on epidemic-
style information dissemination techniques, that shows good perfor-
mances in finding both rare and popular files. It exploits the structure
of the underlying network and by that maximizes its search horizon
and minimizes the number of needed search messages. The presented
simulation results show that the search algorithm not only works well
in Gnutella-like networks, but would be also applicable in a much
broader context such as scale-free networks.
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1 Introduction

Peer-to-peer (P2P) systems have attracted a great deal of attention in

recent years. While users fancy the possibilities of unlimited sharing and

exchange of files, P2P systems also attract the research community. Much

research has been carried out in the area of topology characteristics and

measurements, and the development of faster and better search algorithms.

P2P networks take a totally new and different approach to network struc-

ture, in contrast to traditional client-server networks like the Internet. [7]

describes a server as a software application that provides a service on behalf

of other software applications called clients. In a client-server architecture,

a high number of clients make use of the service of a single server. In con-

trast to conventional client-server architectures, a pure P2P network does

not require a server. Peer nodes in a P2P architecture provide both server

and client services and contribute resources such as sharable data, comput-

ing power, bandwidth and storage space to the network. The main design

principle of a P2P network aims at being completely decentralized and self-

organized. It is more robust than client-server networks in case of failures

because of the replication of data over multiple peer nodes and the local

decision-making of individual nodes. Although P2P networks can host a

wide range of applications and services, they are mainly used for sharing files

(audio, video, images, other digital data), and for transporting realtime data

such as telephone traffic [6].

The lack of a centralized server comes at a high cost: the communica-

tion overhead needed for maintaining the network, for finding other peers,

and the overhead produced by search messages distributed over the network

for finding sharable data, are significant. Therefore, a second form of P2P

systems has been developed: hybrid P2P networks. Hybrid P2P networks

use several known central servers for network maintenance and search, and

clients that provide the sharable content of the network. This form combines

the best features of both architectures. The network overhead caused by

inter-peer communication is reduced, while the robustness of a distributed
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network and the resulting availability of files is still maintained. However,

the maintenance of central servers is expensive and surely not scalable. We

therefore propose a decentralized, unstructured search algorithm, which uses

epidemic-style information dissemination techniques, to control the number

of query messages and to fine-tune the dissemination process. The approach

is based on recent results on complex networks theory and models of epi-

demics spreading. We present simulation results that show that our approach

works efficiently not only in Gnutella-like P2P networks, but would be also

applicable in a much broader context such as scale-free networks.

The thesis is structured as follows: In Section 2 we will describe several

common search algorithms in modern P2P networks, which all have their ad-

vantages and shortcomings. Either these algorithms produce a high message

overhead, which make them applicable only for very restricted use cases, or

a query is not exhaustive and can not guarantee that a file that is in the

network is actually found. We will introduce the concept of epidemic in-

formation dissemination, which is inspired by epidemiological research and

based on recent results of complex network theory in Section 3. In Section 4

we will show how to develop an information spreading algorithm, which dy-

namically evaluates network properties to fine-tune the dissemination of the

information. We will further develop this algorithm as a search algorithm

in a Gnutella-style P2P network and present simulation results of both the

original epidemic algorithm and the epidemic search algorithm in Section 6,

We compare the Epidemic Search algorithm in this Section with Gnutella’s

current search algorithm and with Gnutella’s old flooding-based search al-

gorithm. The evaluation shows that our algorithm produces better search

results for rare files, and produces less overhead in finding popular files com-

pared to Gnutella.
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2 Search Algorithms in Unstructured and Struc-

tured Networks

The location of items in a network is an important part in the operation

of P2P networks. All popular P2P applications [9] work on Unstructured

networks. Unstructured networks connect nodes in an ad-hoc fashion. The

location of files is not controlled by the system. Therefore, there is no guar-

antee for the success of a search. Structured networks, on the other hand,

use content-based routing of query messages. Every node is assigned an iden-

tifier and messages are forwarded only according to these keys. The network

coordinates global agreement on the location of a file. A query labeled with

a specific key is routed to a particular node in the network that stores the

desired file. While being highly reliable in locating items in the network, the

overhead produced of ”publishing” files by keyword is significant [38].

In this section, we describe search algorithms in P2P networks, which

have been either successfully used in popular P2P applications, or are re-

lated to our work. We describe the modern Gnutella system in Section 2.1,

because our search algorithm and proposed protocol is highly influenced by

this system. One of the most popular file sharing applications, eMule, is

described in Section 2.3. As an example of an probabilistic search algorithm

which tries to decrease the message overhead produced by flooding based

techniques used in Gnutella, we introduce Random Walks in Section 2.2.

Gnutella, eMule and Random Walks operate on unstructured networks. To

complete this section, we describe Distributed Hash Tables (DHT), which

operate on structured networks, in Section 2.4.

2.1 Gnutella

The Gnutella P2P network [4], with a user base of over 2.2 million users in

March 2006 [9], is one of the top three popular P2P file sharing applications,

primarily used to exchange music, movies and software. Much research has

been done in characterizing its network topology [36, 37] and due to its open
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protocol specification [3], a healthy developer base is still developing and

maintaining Gnutella applications. We will describe the general information

exchange mechanism between Gnutella peers in Section 2.1.1, the architec-

ture of the two-tier topology in Section 2.1.2 and the actual search algorithm,

Dynamic Query Protocol (DQP), in Section 2.1.3.

2.1.1 Protocol Services

The Gnutella protocol is a pure P2P protocol in the sense that its nodes

operate both as servers and clients. These Servants offer a client-side in-

terface which is used by users to issue queries and to receive search results.

On the other hand, a Gnutella node acts as a server which accepts search

queries from other servants. It checks these queries against its local data set

and responds with corresponding search results. It also manages the network

traffic for spreading the information which is needed to maintain network in-

tegrity. Like peers in other P2P networks, Gnutella servants operate through

messages, defined in a special protocol. The protocol defines messages for

discovering and maintaining connections (PING, PONG) to the network and

messages for searching (QUERY, QUERYHIT). The structure of the messages is

very similar to standard HTTP messages as specified by the W3C [5], and can

be divided into two groups:

• Group Membership messages: A Gnutella servant that wants to join the

network initiates a broadcasted PING message to announce its pres-

ence. Every Gnutella message contains a Time To Live(TTL) value

that limits the lifetime of the message. Each time a node receives a

PING message it decreases its TTL and forwards it to all known neigh-

bours. As soon as the TTL reaches 0, the message expires and gets

deleted from the network. The servant reacts to the PING message by

answering with a PONG message that contains information like its IP

address and number and size of shared files.

• Search messages: When a user wants to search for a file, a QUERY mes-

sage containing the user specified search string is sent to every node the
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peer is connected to. A node receiving the QUERY message matches

the search string against the locally stored file name and broadcasts the

message further. If there is a match, the node answers with a QUERY-

HIT message. A QUERYHIT message contains information necessary

to download the file, like the number of hits, the IP address of the

responding node and the download speed.

For actually downloading a file a standard HTTP connection is established

(GET, PUSH). This means that the download process is not directly part of

the Gnutella protocol. A file download must be initiated by the user, who

inspects the list of search results delivered by a QUERYHIT and chooses the

sources he wants to download from.

Before the introduction of the Gnutella protocol v0.6 in 2002 [4], every

node in the network played the role of an equal peer. This resulted in the

overloading of peers with low bandwidth connections and generally in an

overhead of messages, because every node had to forward every message to

every neighbour. These scalability problems were improved with the intro-

duction of the two-tier overlay architecture.

2.1.2 The Two-tier Overlay Architecture

With the introduction of the two-tier overlay architecture, the Gnutella de-

veloper community [3] implemented specialized roles for peers in the network.

Figure 1 shows the general architecture of this model. A small subset of nodes

becomes ultrapeers, responsible for routing all messages and for shielding

the leaf peers that are connected to them from the network traffic.

To become an ultrapeer, a node must provide sufficient bandwidth, must

not be firewalled 1, and must provide sufficient uptime 2. Ultrapeers are av-

1A firewalled node is a computer residing behind a firewall that blocks certain incoming
traffic. By that the firewall hinders the ultrapeer from communicating with other peers in
the network.

2Uptime is the time an ultrapeer is connected to the network and stays reachable for
other peers.
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Figure 1: The two-tier topology in Gnutella

eragely connected to 30 other peers [35, 37], while leaf peers hold only a small

number of connections (<= 3) to ultrapeers. Leaf peers, on the other hand,

concentrate on providing files. Information about the files the nodes share are

uploaded to the ultrapeer. An ultrapeer forwards only those QUERIES to its

leaf peers that have matching files. The introduction of the two-tier topol-

ogy was the first step to improve the scalability and performance of Gnutella

by reducing search message overhead. Another reason, why Gnutella had

these performance issues, was the simple flooding algorithm for propagating

messages over the network. The Dynamic Query Protocol further reduced

message overhead by considering the popularity of the queried file and re-

ducing the used message TTL.

2.1.3 Dynamic Query Protocol

The traditional Gnutella query protocol has broadcasted every search query

in a flooding based manner. In this algorithm, a message is sent to every

neighbour of a node, until the message TTL reaches 0. Figure 2 shows an
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Figure 2: The flooding of messages in Gnutella

example, of how flooding works. In a first cycle, a message with an assumed

TTL of 3 is flooded from the bottom node to all its neighbours, leaving only

one node in this example without having seen the message. In the second

cycle, all nodes but the ”grey” node will see the same message a second time,

which results in a huge message overhead.

In the old Gnutella network, a query did not adapt to different file pop-

ularities. The number of sent messages was the same for popular and rare

items, resulting in far too many results for popular items. These issues were

improved by the Dynamic Query Protocol [4, 37]. The goal in this approach

is to only gather enough results to satisfy the user’s needs (typically 50 to

200 results). The DQP delegates all search responsibilities to the ultrapeers.

Every leaf peer commits its file list to the ultrapeer it is connected to. When

an ultrapeer receives a search query from an attached leaf node, it starts a

dynamic query which consists of two steps: first it sends a query message

with a low TTL that is flooded outwards, decreasing the TTL each time it

is forwarded until the TTL expires. This is called a probe query, meant to

give some idea of the popularity of the file. Depending on the results the

ultrapeer receives, a second query is started with a higher TTL. This process

is repeated until the desired number of results is reached or the ultrapeer
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gives up. [29] shows the effectiveness of the DQP in finding popular content

and a poor performance in finding rare files. In Section 6 we confirm these

results and compare them with our algorithm.

2.2 Random Walks

Random walks have been proposed for searching and construction of un-

structured P2P networks [23, 38]. They have shown a better performance

and scalability than flooding-based algorithms. We mention Random Walks

in this section, because they are quite similar to our approach. Both use

probabilistic means in reducing communication overhead. Random walks

show constant network overhead, meaning they are independent on the size

of the network. Queries, using random walks, are also known as walkers.

Each node on receiving a query, forwards it to an equal number of randomly

chosen neighbours and by that, the query forms a random path through the

network. Random walks can be either TTL-based or check-based. TTL-

based random walks stop the query after the number of steps specified by

the TTL. A check-based walker contacts periodically the querying node and

stops the query after the termination condition is satisfied. The most impor-

tant advantage of random walk algorithms over flooding-based algorithms is

the reduction of message overhead, by contacting only a subset of neighbours.

[38] has found that only k ∗ TTL messages are sent in the worst case. The

disadvantage, on the other hand, lies in the highly variable performance of

random walks. Its success rate and number of query hits depend on the net-

work topology and the hop distance, in the case of TTL-based random walks.

Furthermore, random walk algorithms are not adaptable to different query

loads. Whether a file is popular or not is not considered by these algorithms;

all queries are treated the same.

2.3 eDonkey2K/eMule

eMule, based on the eDonkey protocol [28, 24], is the second popular P2P file

sharing application [9]. Because it uses servers for centralized indexing ser-

vices, eMule belongs to the group of hybrid P2P systems. A client connects
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to a single known server to get information about files and other clients. It

then connects to multiple other clients to upload and download files. eMule

supports multi-source downloads, that is a file can be downloaded from sev-

eral sources at the same time. This is possible due to the separation of

the file into different parts that are individually downloaded. The different

fragments are then joined together to the final file after the download is com-

pleted. A client is able to upload finished parts of a file, so the sharing of

a file starts even if it is not yet completed. To further encourage the wide

sharing of files, eMule has introduced a credit system that rewards users for

sharing files. The more files a user uploads the more credits the user receives

and the faster he advances in the waiting queue of other users. A waiting

queue is needed because each client only has a restricted number of slots

other clients can use to connect to this user. The quicker a user advances on

a waiting queue, the faster he can start the download.

The search for files is initiated by the user. Each search request is sent

to the server a client is connected to. In contrast to Gnutella, eMule files

are not identified by their file name but by a MD4 hash value [34]. This

makes it possible for the server to clearly identify a file even if it is shared

under several different names. The central server based search in eMule is

the main difference from Gnutella, where each query is forwarded from one

Gnutella servant to another. This forwarding of search messages produces

a considerable amount of the Gnutella message overhead. Because of the

relatively low number of eMule servers the overhead produced by search

messages is not a problem in eMule. [24] finds that there is a different

drawback in the communication between eMule servers: the communication

protocol between eMule servers is UDP [32], which is a stateless protocol.

Therefore, an eMule server can not check if another server is still running. It

keeps sending messages and by that causes traffic overhead. Finally, because

any server can handle only a certain number of users, this approach is not

scalable. New servers have to be introduced with an increase in user numbers.

Furthermore, if a server goes down, the network is severely handicapped [2].

13



2.4 DHT and Hybrid Search Approaches

As an example of algorithms working on structured networks, we describe

Distributed Hash Tables (DHT), a class of distributed lookup services for

efficiently finding resources in a network [33, 19]. Each node of the net-

work represents a bucket of a hashtable, where keys map unique identifier to

nodes that contain a resource. DHTs consist of two components: a keyspace

partitioning scheme that splits the ownerships of keys among nodes and

a overlay network that connects nodes and allows to find the owner of a

given key.

To store a file in the DHT, a node calculates the hash value key of a file

with content data and sends a message (key, data) to all its neighbors. The

message gets forwarded until it reaches the single node that is responsible

for the key, according to the keyspace partitioning. In order to find a file for

a given hashvalue key, the search message is routed to the node responsible

for that key, which responds with the stored data. The keyspace partitioning

is a technique for a node with only local knowledge to decide which neigh-

bour in some sense is closer to the destination of a file. The DHT network

automatically adjusts the mapping of keys and neighbor tables when the set

of nodes changes. Most DHTs guarantee that routing completes in O(logN)

hops for a network with N nodes, while Gnutella requires O(N) steps to

reliably locate a specific file [17]. The first DHTs were designed to scale to

large number of nodes and to overcome scalability problems of such systems

as the old Gnutella. The Content-Addressable Network (CAN) developed

by [33], maintains a d-dimensional coordinate routing table that holds the

IP address and a virtual coordinate of each immediate neighbour of a node.

Another DHT system is CHORD developed by [19], who use consistent hashing

[27] to map nodes onto an m-bit circular identifier space.

[29] proposes a hybrid query processor, combining the Gnutella search

algorithm for popular files with a DHT-based search for rare content. This

is motivated by measurements which suggested that Gnutella is highly ef-
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fective for locating popular files, but performs poorly in finding rare items.

Due to the fact that DHT-based search is bandwith-expensive, a partial in-

dex for locating rare items has been proposed. To decide, which items are

rare and need to be published, several schemes has been analyzed. Each

ultrapeer node gathers information about results generated with certain key-

words to decide if a file is rare and needs to be published via DHT. How-

ever, this approach lacks elegance. It needs two separate overlay networks:

an unstructured Gnutella network for popular files and a structured DHT

overlay for rare files. We introduce the concept of Epidemic Information

Dissemination in the next section, which we use to design an universal

search algorithm in Section 4 which works both for rare and popular files.
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3 Epidemic Information Dissemination

Epidemic algorithms are a potentially effective mechanism to disseminate in-

formation in distributed systems, particularly in P2P networks. They exploit

epidemiological research results on the spread of contagious diseases. There

is a strong analogy between information dissemination in distributed systems

and epidemic transmission in communities. Diseases are transmitted by con-

tact between infected individuals and susceptible (i.e. potentially infectable)

individuals. The spread of an epidemic can be used to model replication and

dissemination of information in a P2P system. The highly resilient nature of

epidemics can be used to ensure the reliability and robustness of an epidemic

algorithm. In a community, only a few people need to spread the disease

to make it almost impossible to wipe out the epidemic again. Even if many

infected people die before they can transmit a virus, the epidemic will reli-

ably propagate throughout the population. The analogy becomes even more

evident when the content of the information is malicious as in the case of

computer viruses [14, 18]. According to [13], epidemiologists have found that

there is a critical threshold for the propagation of a disease throughout a

population. Any epidemic less infectious than this threshold will inevitably

die out, whereas those above the threshold will multiply exponentially. For

Scale Free networks this threshold is zero. That is, all viruses, even those

that are weakly contagious, will spread and persist in the system.

Epidemic-style algorithms and protocols have been subject of research in

various areas such as distributed computing [40, 21], distributed databases

[20], and ad-hoc networks [39, 12]. Not only are they highly scalable, but

also easy to deploy, robust and resilient to failure. Through the adjustment

of the parameters of an epidemic algorithm, even in systems with a dynamic

network topology, process crashes, disconnections and packet losses, a high

reliability can be achieved. Epidemic algorithms rely on probabilistic message

replication and redundancy, to ensure reliable communication among nodes.

However, these approaches are mostly based on empirical experiments, not

analytical methods. The input parameters to control the dissemination pro-
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cess are selected on experimental results, not on mathematical models. As

a result, the information dissemination can not dynamically be tuned with

accuracy. [21] give an overview on epidemic algorithms in distributed sys-

tems. They describe key problems such as membership maintenance, network

awareness, buffer management and message filtering, where epidemic algo-

rithms are applicable. [42] propose a protocol for disseminating information

in ad hoc networks and p2p networks. However, their work is in an early

stage. The future goal of their work is a hybrid approach of DHTs and epi-

demic dissemination.

Complex network theory is the means to describe social, biological and

computer networks, were nodes represent individuals or hosts and links rep-

resent their interactions. For example, the brain is a network of nerve cells

connected by axons, whereas societies can be seen as networks of people

linked by friendships, familial relationships and professional ties. Com-

plex networks can be characterized by their distribution of node linkages:

exponential networks and scale free networks. The simplest example

of an exponential network is the random graph model [15, 10]. The place-

ment of links between nodes is completely random and most nodes will have

approximately the same number of links. Therefore the connectivity dis-

tribution P (k) follows a Poisson distribution with its characteristical bell

shaped curve, which peaks at an average value 〈k〉 in this model. Random

networks are called exponential, because the probability that a node is con-

nected to k other nodes decreases exponentially for large k [13]. Exponential

networks are characterized by very small fluctuations (i.e., the degree of ev-

ery node can be approximated as k ≈ 〈k〉); for this reason, they are also

identified as homogeneous networks. This corresponds to the homogeneous

mixing assumption that is usually made by epidemiologists in a large num-

ber of studies [11]: all individuals in the population have the same number

of acquaintances that can be infected. On the other hand, for the inherent

fluctuations of the degree of connectivity, scale-free networks are classified

as heterogeneous networks. Examples of scale free networks are the World

Wide Web and the Internet [13]. Scale free networks show a power-law con-
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nectivity distribution P (k) ∼ k−2−γ with γ > 0. In this model, nodes of

the network are not considered equal. When deciding where to establish a

link, a new node prefers to attach to an existing node that already has many

other connections. This behavior leads to a network dominated by hubs, a

low number of nodes having an enormous number of links, while the major-

ity of nodes in the network has only a few connections to other nodes. We

outline network topology characteristics of the Gnutella network and analyze

the behavior of our algorithms in homogeneous and heterogeneous networks.

In Section 4 we show that an epidemic algorithm based on epidemic models

and recent results of complex network theory can be designed, which dynam-

ically adapts to the underlying network topology and controlls the number

of message replicas spread around the network.

3.1 The Infection Spreading Model

The Epidemic dissemination algorithm that we adopt as a basis for a search

algorithm in a Gnutella-like network, is based on the work of [31], which

they have applied in Mobile Ad-hoc Networks (MANETs). The core of the

Epidemic dissemination algorithm is an infection spreading model, proposed

by Kermack and McKendrick in 1927. A simplified model which is used by

[31] is the Susceptible-Infective-Susceptible SIS model [1, 11]. An individual

can be in two possible states; infected (i.e., an individual is infected with

a disease), and susceptible (i.e., an individual can potentially get infected).

The model is mapped onto P2P networks, by substituting the individual

with a host (a node in the network). A host is considered infected, if it

holds the message, and susceptible, if it does not. If the message is deleted

from the host, the host becomes susceptible again. The assumptions which

[31] make for their model in MANETs are also valid for P2P networks. The

dynamics of the infectives and susceptibles in a scenario composed of N(t)

active hosts (i.e., not failed), can be described by means of a system of

differential equations:
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dS(t)

dt
= −βS(t)I(t) + γ(t)I(t)

dI(t)

dt
= βS(t)I(t) − γ(t)I(t)

dN(t)

dt
= −φN(t)

S(t) + I(t) = N(t)

(1)

where:

• I(t) is the number of infected hosts at time t;

• S(t) is the number of susceptible hosts at time t;

• β is the average number of contacts with susceptible hosts that leads

to a new infected host per unit of time per infective in the population;

• γ is the average rate of removal of infectives from circulation per unit

of time per infectives in the population;

• φ is the failure rate (i.e., the probability that one host fails per unit of

time).

If we solve the system by using the initial condition I(t) = I0 (where I0 is

the number of initial hosts infected), we obtain that the number of infectives

at time t is described by the following equation:

I(t) =
I0e

αβt

1 +
I0

α
(eαβt − 1)

(2)

with α = N(t) −
γ

β
. N(t) is considered approximately constant during the

entire epidemic process described by the system 1, since we assume that the

failure process is stationary considering the interval of time during which the

epidemics spreading happens (i.e., we assume N(t) ≈ N ∗ with N∗ equal to

the number of hosts present in the system at the beginning of the epidemics).
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In our case the initial condition is I0 = 1: this represents the first copy of the

message that is inserted in its buffer by the sender. This result can be used

to calculate the number of infectives at instant t with a given infectivity β

and a given removal rate γ, or, more interestingly for our purposes, β and γ

can be tuned in order to obtain a certain epidemics spreading, after a specific

length of time has passed. The infectivity β is the fundamental parameter

of the message replication algorithm. In fact, a certain infectivity β can be

selected in order to obtain, at time t∗, a number of infectives (i.e., hosts that

have received the message) equal to I(t∗) or, in other words, a percentage

of infectives3 equal to I(t∗)/N(t∗). The parameter γ can be interpreted as

the deletion rate of the messages from the buffer of the hosts. In fact, since

the message buffers have limited size, it may be necessary to delete some

messages according to a certain policy. Thus, from the average removal rate

of messages from buffer, it is possible to derive the infectivity that is neces-

sary and sufficient to spread the infection. In case the absence of overflow

phenomena (i.e., in the case of sufficiently large buffers) can be assumed, the

model can be simplified with γ = 0.

In homogeneous networks, such as random graphs4, the node degree k for

each node can be approximated quite precisely with the average degree of

connectivity 〈k〉 of the network. Therefore, in case of homogeneous networks,

in order to take into account the effect of the connectivity, it is possible to

rewrite the system (1), substituting β with λ
〈k〉

N
as follows, as discussed

3Note that β = f(I(t)) is not defined for I(t) = N(t). Therefore, from a practical
point of view, in the case of a message sent to all the hosts of the system, we will use the
approximation I(t) = N(t) − ε, with ε > 0, in the expression used to calculate β.

4The degree distribution of a random graph is a binomial distribution with a peak at
P (〈k〉).
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in [14]:






























































dS(t)

dt
= −λ

〈k〉

N
S(t)I(t) + γ(t)I(t)

dI(t)

dt
= λ

〈k〉

N
S(t)I(t) − γ(t)I(t)

dN(t)

dt
= −φN(t)

S(t) + I(t) = N(t)

(3)

The first equation states that the number of susceptible hosts is given by the

sum of a term proportional to the spreading rate λ, the number of susceptible

nodes that may become infected, S(t), the number of infected individuals

in contact with any susceptible node and a term, γI(t), that represents the

number of infectives that recover and then become susceptible again, per unit

of time. The second equation can be interpreted in a similar way. The third

equation models the variation of the number of hosts; the fourth encapsulates

the assumption that hosts that did not fail are either infected or susceptible.

λ represents the probability of infecting a neighbouring host. 〈k〉
N

gives the

probability of being in contact with a certain host. In other words, in this

model, by substituting β with λ 〈k〉
N

, we have separated, in a sense, the event

of being connected to a certain host and the infective process [14].

The solution of this system is similar to (2) (i.e., it is sufficient to sub-

stitute β with λ 〈k〉
N

). Thus, it is possible to calculate λ as function of I(t∗)

and 〈k〉. Finally, it is interesting to note that in homogeneous networks, ev-

ery host knows its value of k and, consequently, of 〈k〉. We will exploit this

property to tune the spreading of message replicas in the system.
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4 The Epidemic Search Algorithm

[31] designed a set of middleware primitives which allow a reliable and tun-

able probabilistic communication and information dissemination in mobile

ad hoc networks (MANETs), consisting of about 100 nodes. The goal of

our work is the evaluation of this algorithm in a P2P environment with a

much higher number of nodes. We therefore design a search algorithm for

Gnutella-like networks, which uses epidemic information dissemination tech-

niques to control the dissemination process of queries. In a P2P network such

as Gnutella (Section 2.1), messages are sent from source A to its neighbours

in a flooding-based manner. To avoid the overhead produced by flooding the

message to each neighbour, we use the results from Section 3.1 to only send a

message from A to a randomly chosen neighbour B with a certain probability

Ψ, and still make sure that at time t∗ a certain number of hosts have received

the message. Thus, the parameter Ψ can be used to control the reliability of

the information dissemination mechanism. In other words, given an expected

reliability (or percentage of hosts which has to be infected) equal to Ψ, it is

possible to calculate the value of β in order to obtain I(t∗) = ΨN .

4.1 The Epidemic Search Algorithm in a Gnutella-like

network

As mentioned in Section 2, several approaches have been undertaken to im-

prove search algorithms in P2P networks. Search facilities in eDonkey/eMule

rely on central indexing servers. This means potential scalability problems

if too many clients try to query the same server. The Gnutella search was

traditionally based on flooding search queries over the network, meaning a

high overhead. Gnutella’s Dynamic Search Protocol and the two-tier topol-

ogy of modern Gnutella [4, 35, 37] fought that problem. [30] have measured

a good performance of the DQP in the search for popular items, but a poor

performance in locating rare items. This is due to the fact that the Gnutella

search is not an exhaustive search. Its query horizon is restricted by the mes-
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sage TTL, so only a small fraction of nodes in a network will be covered by a

given query. As a result, there is no guarantee that a query returns matches

that actually exist in the network. To overcome this problem, there has been

approaches to combine Gnutella search for popular items using a DHT-based

search for rare items in a hybrid query processor [39, 12]. DHT-based P2P

applications use structured overlay networks to both control the data place-

ment and the overlay topology itself. They can efficiently locate rare files,

but at a high cost. Two main disadvantages of DHT can be observed. In

a highly dynamic network with high fluctuation rates of nodes leaving and

joining the network, a high overhead of replicating the content between the

nodes is produced. Also, DHTs ability to implement keyword search, which

is crucial for file sharing applications, is weak and still difficult to implement

[30, 29]. Random walks also significantly reduce message overhead [38]. Be-

cause of the TTL they use, they have the same problems as the Gnutella

approach in being not exhaustive. Furthermore, while the DQP dynamically

adapts the sent messages on the popularity of the queried file, random walks

do not learn anything from their previous success or failures.

We propose an Epidemic Search Algorithm based on epidemic infor-

mation dissemination. The algorithm takes into account the desired number

of search results and the popularity of the queried file. We exploit the two-

step search process of Gnutella’s Dynamic Query Protocol, to dynamically

adapt our algorithm to different file popularities. A probe search is triggered

in order to get an idea of the file popularity. A second query is designed

by evaluating the number of responses from the probe search to generate

just enough results to satisfy the users needs (typically 50 to 200 number

of results). In case of popular files, where the probe query delivers a suf-

ficient number of results, no second query is sent, the search process stops

immediately. However, there is one major difference between Gnutella and

our search approach. Instead of using a higher or lower TTL value to adapt

to rare or popular files, we use the epidemic reliability parameter Ψ to

fine-tune the dissemination of the query. The Epidemic Search Algorithm

furthermore analyzes network parameters like the number of nodes N and
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their connectivity k. In case of a poor connected overlay the algorithm is

able to adapt the dissemination process to still make sure a sufficient num-

ber of nodes receive the query. A simple proportional equation (4) is used

to evaluate the probe query and to choose a sufficient value of the reliability

parameter for the second query:

Nrprobe

Nrdesired

=
Pprobe

Pdesired

(4)

Nrprobe is the number of results that are returned from the probe query,

and Nrdesired is the number of results the user wants to receive. Pprobe is the

reliability parameter for the probe query (i.e., the percentage of hosts that

are reached by the probe query). Pdesired is the percentage of hosts that need

to be reached and can be calculated out of the others to set the reliability

for the standard query.

It is important for the algorithm to know in advance how popular search

results will be, to adjust the parameters of the probe query precisely. If the

probe query is sent using a too high reliability value and the queried file is

popular, too many results are allready returned by the probe query, wasting

bandwith and producing overhead. If the queried file is rare and the probe

query is sent to an insufficient number of hosts, the resulting calculation of

the reliability parameter is not reliable enough and statistically not valid.

The following requirements are needed for the algorithm to work:

• The algorithm has global knowledge over the network topology. This

includes information about the number of nodes in the network and

their degree of connectivity.

• The algorithm has information about the rough popularity of keyword

combinations to choose an appropriate starting value for the reliability

parameter of the probe query.

In the Future Work section we describe, how this global knowledge can be

achieved. We describe a scheme that uses a query results size threshold
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to decide if a keyword combination is popular and a lower probe reliability

parameter is sufficient. Finally, a periodical crawl of the network can gather

needed properties of the network. In Section 5 we describe the architecture

of the simulation framework and the implementation of our algorithms.
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Figure 3: The component architecture of PeerSim

5 Architecture and Implementation

To implement the algorithms described in Section 4.1 and produce simulation

results, we need a highly configurable framework that can easily be adapted

to different needs. For instance, it should be possible to change the underly-

ing network structure, or to exchange one algorithm with another. PeerSim

[25, 26] is a Java framework designed to experiment with large scale P2P

overlay networks. Its simulator architecture is highly scalable (i.e., it is able

to support a high number of network nodes), and through its component

structure fully configurable. This makes it easy to join together different

pluggable building blocks. The simulator is based on the concept of cycles:

in each cycle a protocol defined function is executed, in which a node of the

network can communicate with its neighbours to perform a specific task (i.e.,

exchange messages).

Figure 3 shows the rough architecture of the simulation framework and

our system. The configuration of PeerSim is done via a config file, in which

the developer can set the number of nodes of the network, the number of

cycles that make up one experiment, and the number of experiments a sim-

ulation shall consist of. The developer can set one or several protocol com-

ponents. A protocol represents a node of the network, with a message buffer
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to store query messages and the actual search algorithm which defines how

the messages are forwarded to the node’s neighbours. We use a separate

protocol component for each search algorithm. The developer specifies one

or more initializer controls which can be used to initialize protocols,

including setting up the topology by connecting the nodes of the network.

One or more observer controls are used to collect data about the current

simulation state, like the number of sent messages, or the number of nodes

that have received a message. To collect information from several experi-

ments, the output of the observers can be sent to customized PrintStream

objects, who parse the information and write it to textfiles or to the standard

output.

5.1 From the Model to the Code

PeerSim nodes communicate by sending messages to each other. The archi-

tecture of the messages is shown in Figure 4. The messages are composed

of a header, containing information for routing the message, and a message

body, containing the actual data. The message header contains the sender,

a unique identifier and a flag payload which characterizes the type of the

message. Each message also contains an expiration time field, used to spec-

ify its validity. Every node can store a finite number of messages, which are

inserted into the buffer of a node only if not already present. Additional

fields are used to store parameters of the mathematical model, which is used

for the replication mechanisms of the messages.

To implement both the Gnutella Search and the Epidemic Search, we

adapt the Dynamic Query Protocol implementation of PHEX [8], a Gnutella

application written in JAVA, into PeerSim. For Gnutella, we use the PHEX

message implementation. Instead of using a TTL field as in the Gnutella

message implementation to control the validity of the message, we can use

the expiration time and delete the epidemic message at time t∗. We use a

PeerSim protocol component to maintain a message buffer and control the

dissemination of the messages in the buffer in each cycle t, until cycle t∗ is
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Figure 4: The epidemic message architecture

reached and the message dies. Source code 1 shows the message replication

algorithm, which is executed periodically in each node. The algorithm runs

through every message stored in the node’s buffer and checks its expiration

time. If the message has expired, the node removes the message and jumps

to the next message in the buffer. For every valid message a random number

between 0 and 1 is generated. The algorithm runs through every neighbour

of the node and compares the generated random number with the message

infectivity. The message is sent to the neighbour, if its random number is

less or equal the infectivity of the message.

For the generation of the random numbers we use the library Colt v1.2.0

[16], an open source library for high performance scientific and technical com-

puting in Java. Each node of the network obtains its own instance of the

random number generator object. We use the cern.jet.random.Uniform

implementation that generates statistically uniformly distributed random

numbers. We encountered some difficulties using the built in Java Random

class that is used in PeerSim. It seems that this implementation does not

produce true uniformly distributed random numbers, which is crucial for the

Epidemic Algorithm to work.

Each time a node wants to send a new message over the network, the

system must calculate the infectivity λ which is necessary and sufficient to

spread the information with the desired reliability (that has to be chosen
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// go through all messages in the buffer

foreach(msg in buffer) {

if (msg.getExpirationTime() < CommonState.getTime()) {

// time is up

removeFromBuffer(msg);

continue;

}

// should be between 0..1

double inf = msg.getInfectivity();

// go through all reachable nodes

foreach(node in nodes) {

// rValue, infectivity between 0..1

double rValue = generateRandomNumber();

// models the probability lambda

if (rValue <= inf) {

sendMsg(node,msg.clone());

}

}

}

Source code 1: Epidemic Spreading Algorithm.

in the range [0,1]), in a specified time interval, evaluating the average de-

gree of connectivity and the number of nodes of the network. The message’s

unique identifier, the value of the calculated infectivity, the expiration time

that indicates when the message needs to get deleted from the network are

inserted into the header of the message and the message is stored in the node

which created the message. Source code 2 shows the code used in a PeerSim

init control component which creates a new message and stores all needed

parameter in it.

In the simulation we create one message and inject it in a randomly cho-

sen node of the network. The average k = avgK = 〈k〉 can be found by

running through all nodes of the network and evaluating the number of con-

nections each node has. It is also possible to use the parameter given in the

config file that is used to construct the underlying network topology. The

code for calculating β and λ (the infectivity) is given in Source code 3 and 4.
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int avgK = System.getAvgK();

int n = Network.size();

double t = System.getMsgTimeValid();

double beta = calculateBeta(reliability, n, t);

double inf = calculateInfectivity(beta, avgK, n);

msg = new Message();

msg.setExpirationTime(System.getCurrentTime+t);

msg.setInfectivity(inf);

msg.setContent(messageContent);

System.addToBuffer(startNode,msg);

Source code 2: Creation of the Message.

To calculate β, the algorithm needs to know the reliability (Ψ), number of

nodes in the network, and the number of rounds (i.e., the time period the

message is valid), set in the config file by the developer. We use an adapted

binary search algorithm (Source code 3) to calculate β. We calculate the

number of hosts we need to infect and try different values for I(t), until

I(t) == hostsToInfect. The calculation of λ is shown in Source code 4.

The algorithm multiplies β with the number of nodes in the network and

divides through 〈k〉.

In contrast to [31], we do not consider restricted buffers and therefore we

do not need to take into account the average removal rate γ. We assume

that due to more available ressources such as memory capacity in P2P ap-

plications than in devices for MANETs, no removal of messages during the

life time of a message is needed. In the simulation we are more interested

in the behavior of one query at a time. However, in a real application it is

easy to implement the γ parameter, if the application developer has to cope

with restricted resources that makes deletion of messages from the buffer

inevitable.

The cycle of the search algorithm is the same for Gnutella and Epidemic

Search. A method processQuery() as shown in source code 5 is invoked
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private double calculateBeta(double reliability,

int networkSize, double nrRounds) {

double nrHostsToInfect = networkSize * reliability;

double coeff = (reliability==1.0) ?

((99.9999 / 100) * nrHostsToInfect) :

nrHostsToInfect;

double low = 0.0;

double high = 1;

//adapted binary search

while ((int)i != (int)coeff) {

beta = (high + low)/2;

double b = Math.exp(nrRounds * networkSize * beta);

i = b / (double)(1 + ((b - 1)

/ (double)networkSize) );

if(i >= coeff) {

high = beta;

}else {

low = beta;

}

}

return beta;

}

Source code 3: Calculation of β.

periodically and, depending on the state of the query process, calls either

processProbeQuery() (Source code 6) or processStandardQuery() (Source

code 7). The standard query is only invoked if the number of results of the

probe query is not sufficient.

If a probe query has not yet been sent, processProbeQuery() as shown

in Source code 6 is invoked. It sends a probe message with a default time the

message is valid5, and a value for the reliability (either set by the developer

or calculated by the schemes described in Section 4.1). It then sets a flag

indicating that the probe query was sent and a waiting time that is needed

5We empirically found that t = 100 rounds are statistically sufficient to ensure the
dissemination process. However, a different value could be needed for different networksizes
and connectivities.
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private double calculateInfectivity(double beta,

int avgK, int networkSize) {

return (beta * networkSize) / (double) avgK;

}

Source code 4: Calculation of λ.

public void processQuery() {

int currentTime = CDState.getTime();

if (currentTime < nextProcessTime

|| isQueryFinished()) {

// not our turn to query now...

return;

}

if (!isDynamicQueryStarted) {

isDynamicQueryStarted = true;

}

if (!isProbeQuerySent) {

processProbeQuery();

} else if(!isQueryFinished()) {

processStandardQuery();

}

}

Source code 5: processQuery.

until the results are returned to the searching node.

The method processProbeQuery() in Source code 7 evaluates the search

results from the probe query by calling calculateReliability(). It sends

the query message with the same time validity as processProbeQuery().

The method sendMessage() constructs a new search query similar to that

shown in Source code 2, calculates all needed parameters and adds the mes-

sage to the sender node’s buffer. After sending the standard query, the search

process stops by setting the isDynamicQueryStopped flag to true.

Source code 8 shows the calculation of the reliability parameter needed

for the standard query which is derived from (4). It multiplies the reliability
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private void processProbeQuery() {

double reliability = DEFAULT_PROBE_RELIABILITY;

int msgTimeValid = DEFAULT_MSG_TIME_VALID;

...

sendMessage(node, reliability, msgTimeValid);

nextProcessTime = CDState.getTime() + DEFAULT_MSG_TIME_VALID;

isProbeQuerySent = true;

}

Source code 6: processProbeQuery.

private void processStandardQuery() {

double reliability =

calculateReliability(DEFAULT_PROBE_RELIABILITY);

int msgTimeValid = DEFAULT_MSG_TIME_VALID;

...

sendMessage(node, reliability, msgTimeValid);

isDynamicQueryStopped = true;

}

Source code 7: processStandardQuery.

used in the probe query with the user defined number of desired results, and

divides this through the number of results received by the probe query.

private double calculateReliability(double percHostsProbe) {

return rel = percHostsProbe * DEFAULT_DESIRED_RESULTS

/ (double) nrProbeResults;

}

Source code 8: calculateReliability.
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6 Evaluation

In order to evaluate the epidemic algorithm those characterizing properties

were analyzed in [31], we present simulation results gathered using PeerSim.

In Section 6.1 we evaluate the proposed system and model it using a Ran-

dom Graph network topology, while later in that section we present results

using a Scale Free network topology. We also show that the Epidemic Al-

gorithm can be applied as an effective search algorithm which can compete

against Gnutella’s search engine. We compare the Epidemic Algorithm as a

search algorithm in a Gnutella-like network with Gnutella’s Dynamic Query

Protocol. For a reference, we also show a comparison between the Epidemic

Search and Flood Search, a flooding-based algorithm that was used in the

early Gnutella implementations.

We choose a Random Graph network as the basic overlay network for

our experiments with Gnutella. As described in Section 2.1, only ultrapeers

are responsible for searching the Gnutella network. Therefore, we only con-

sider the ultrapeer overlay in our simulations. [37, 36] have found that this

ultrapeer-layer forms a stable core-layer, whose nodes are connected ran-

domly. It also exhibits small-world properties [41], meaning that to reach

a random node A from another node B only a few hops are needed. This

top-level overlay forms a stable core, with a spike in its connectivity de-

gree distribution around 30. This means, we can approximate the Gnutella

topology through a Random Graph with an average degree of connectivity

〈k〉 = 30. We give some evaluation results also for Scale Free networks, to

continue and support the analytical work of [31]. We can also use these re-

sults to show the universal applicability of the Epidemic Algorithm.

Analysis of PeerSim’s Topology Generators We evaluate the distri-

bution of the number of links of the Random Graph and Scale Free network

(Barabasi-Albert (BA), [10]) implementation of PeerSim. Figure 5.a) shows

the link degree distribution of the Random Graph generator used in PeerSim.
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(a) Random Graph Topology (b) Scale Free Topology

Figure 5: The distribution of number of links of the network topology in
PeerSim.

We used a network size of 10000 nodes and a connectivity parameter k = 30.

The graph clearly shows the expected bell-shaped curve of the distribution

of node linkages of random graph networks. A peak around 30 can be ob-

served. Figure 5.b) shows the power law distribution of node linkages of the

BA model. We also use a k = 30, which in this case is the number of edges

added to each new node. It is interesting to notice, how steep the curve is.

The steepness of the curve implies that in a sufficient big network the number

of nodes with a medium or high connectivity is quite high. We empirically

show that in this implementation of Barabasi-Albert networks our epidemic

model also works for Scale Free networks.

6.1 The Plain Epidemic Algorithm

The emphasis of the evaluation of the epidemic algorithm in this work is to

show that the algorithm can universally be applied using different network

topologies with varying parameters and properties. We therefore use a sys-

tem consisting of 100 to 10000 nodes, being connected using two different

topologies with different degrees of connectivity.

PeerSim uses a cycle based model. We decided not to use the physical
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time from the original work [31], but to use logical time (trounds ) instead.

Apparently it is easy to convert one time model into the other. In order

to gain statistically valid data we ran 20 experiments of each simulation

and calculated the average of the different trials. Each experiment lasts

for 100 rounds (τ = 100). Clearly, the choice of the values of τ influences

the accuracy of the model, since it relies on a probabilistic process. Our

simulation showed that 100 rounds are sufficient to achieve accurate results.

Developers could ensure the accuracy of the model by checking τ << tMIN ,

with tMIN being the minimum value of the timestamp of the message. For

the Law of the Large Numbers, we obtain a better accuracy of the simulation

as the number of rounds (i.e., from a probabilistic point of view, the number

of trials) increases. We assume that in the infection phase the number of

hosts remains constant and the buffers are well-dimensioned (i.e., big enough

for all messages to be stored without the need to remove valid messages), so

we can consider the removal rate γ = 0 and simplify the calculation of β as

shown in source code 3.

6.1.1 Random Networks

In this Section we analyze the results of our simulations, run on an expo-

nential network (Random graph). We study the influence of the parameters

number of hosts and average connectivity 〈k〉) on the following perfor-

mance indicators:

• The delivery ratio: This is the hostsinfected/networksize ∗ 100 that

is is the number of hosts that have received a message divided by the

number of hosts in the network. It is desirable that the value is close

to the set reliability.

• The number of messages: This is the needed number of messages that

are sent over the network after a period of time t∗.

Figure 6 shows the epidemic spreading process (i.e., the number of infec-

tives I(t∗) in a network consisting of 10000 hosts, with a desired reliability

of 100 % and 50 %, in a time period of t∗ = 100. The shape of the curve
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and the time when the infection process starts can vary slightly in different

trials. It is also important to notice that we use ”global knowledge” on the

network to calculate 〈k〉. In an application with only local knowledge were

the approximation k ≈ 〈k〉 can be used, the resulting β can vary from the

ideal value. For example, if a message is sent by a host that has a degree of

connectivity k > 〈k〉 the value of β will be lower than the infectivity associ-

ated to the average degree of connectivity 〈k〉.

(a) with desired reliability = 100 (b) with desired reliability = 50

Figure 6: Simulation data infection spreading curve in Random Graph net-
work with 10000 hosts, using an infection time of t∗ = 100 rounds

Figure 7 shows the delivery ratio on a system with a high number of

hosts, with 〈k = 20〉, t∗ = 100, and a desired reliability equal to 100 and

50, respectively. The number of infected hosts decreases slightly with an

increasing network size. It seems that the chosen number of rounds t∗ = 100

is statistically not always sufficient enough to ensure the infection process in

a high-number network. Either the extension of the duration of the message

validity, or an increase of 〈k〉 can solve this problem.

Figure 8 shows the overall number of sent messages as a function of the

population density. A number of hosts from 100..10000 nodes is used, k = 30,

t∗ = 100, and 20 experiments per sample. It is interesting to see that the

curve in both cases of desired reliability is approximately linear. This shows
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(a) with desired reliability = 100 (b) with desired reliability = 50

Figure 7: Delivery ratio vs population density with t∗ = 100 rounds

the scalability of our algorithm.

(a) with desired reliability = 100 (b) with desired reliability = 50

Figure 8: Number of messages vs population density with t∗ = 100 rounds

6.1.2 Scale Free Networks

Due to the lack of mathematical epidemic models for Scale Free networks

we can only give empirical results of our simulations, at the moment. [31]

found, that the approximation k ≈ 〈k〉 is not valid for heterogeneous (i.e.,

Scale Free) networks. They observed that given k fluctuating in the range
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[kMIN , kMAX ] 6, for a value of the infectivity corresponding to k = kMIN ,

the obtained spreading of the infection I(t∗, kMIN) will satisfy the following

property:

I(t∗, k) > I(t∗, kMIN) ∀k ∈]kMIN , kMAX ] (5)

In other words, if kMIN is selected in the calculation of the value of the in-

fectivity, the value of Reliability can be considered approximately as a

guaranteed lower bound of the reliability level. Properties of the network

such as the value of kMIN , 〈k〉, and the network size n can be dynamically

retrieved and set by crawling the network in periodical intervals.

(a) with desired reliability = 99 (b) with desired reliability = 50

Figure 9: Infection spreading curve in BA Networks with t∗ = 100 rounds,
using a 〈k〉 = 20 value

Figure 9 shows the infection spreading curve in Scale Free networks. A

network size of 10000 nodes is used, a k = 30, and a time period of t∗ = 100

rounds. Our empirical evaluation has shown that if a kMIN is used in the

calculation of the infectivity, the system is overestimating too much and a

too high number of nodes is reached. We therefore use 〈k〉 in Scale Free

networks, as well. The curves in Figure 9 show a similar behaviour as in

Random Graph networks.

6Homogeneous networks can be considered as a particular case of heterogeneous net-
works with 〈k〉 = kMIN = kMAX
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(a) with desired reliability = 100 (b) with desired reliability = 50

Figure 10: Number of messages vs population density in BA networks with
time = 100 rounds

Figure 10 shows the number of sent messages as a function of the number

of hosts in a Scale Free network. A number of hosts from 100..10000 nodes

is used, k = 30, t∗ = 100, and 20 experiments per sample. The curves look

very similar to Figure 8. As in Random Graphs, it seems that the number

of messages increases almost linear with the number of hosts.

(a) with desired reliability = 100 (b) with desired reliability = 50

Figure 11: Delivery ratio vs population density in BA networks with t∗ = 100
rounds

Figure 11 shows the delivery ratio for the respective number of messages
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shown in Figure 10. As for a desired reliability = 100, the delivery ratio for

all numbers of hosts is very close to 100. For a desired reliability = 50 the

algorithms seems to overestimate a significant amount. The delivery ratio is

around 60 and even peaks at 70 for a number of hosts = 500.

6.2 The Epidemic Algorithm as a Search Algorithm

With the introduction of the two-tier topology and the development of the

DQP, Gnutella managed to overcome its scalability problems and has in-

creased its user base in 2006 to over 2 million users [9]. However, recent

research [30, 29] still tries to improve certain aspects such as the search for

rare items in Gnutella-like P2P networks. The proposed DHT-based hybrid

search algorithms suffer from high content publishing overhead as described

in Section 4.1, and, due to its hybrid network topology, is not as simple and

elegant from a software engineering point of view, as algorithms based on

simple unstructured networks. To compare our Epidemic Search with the

Gnutella Search, we consider three parameters which we think are funda-

mental for an efficient, reliable and slim search algorithm:

• Deviation from desired to received results: This is the error of

the number of results the user wants to the actually number of received

results. The lower this deviation is, the more economical the algorithm

is in terms of overhead.

• Sent messages: This is the number of overall sent messages in the

network. The less messages a query needs to successfully returns the

number of desired results, the more efficient an algorithm is.

• Sent/Received ratio: This is the number of sent messages, divided

through the number of received messages. A low sent / received ratio

means a highly efficient query.

Each of these parameters are evaluated in a network with 10000 nodes,

using a k = 30, and a time period of t∗ = 100 rounds. Each of the parame-

ters is printed as a function of Number of items in the network that is the
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file popularity. Apparently, the overhead produced by a high deviation of

desired results and the resulting number of sent messages is far higher for

popular files. On the other hand, a low sent/received ratio is only meaningful

in combination with a low deviation of desired results. For a user it is more

important to receive the desired number of results, so it is acceptable for a

query to need more query messages for rare files. The potential in saving mes-

sages lies in finding popular files efficiently, without producing high overhead.

We compare the Epidemic Search with the DQP of Gnutella, considering

a Random Graph overlay network consisting of ultrapeer nodes. In a first

step, we inject a pseudo file containing a search string into a certain percent-

age of nodes of the network. The nodes are chosen in a random manner. In

the search process, every node runs through the message buffer and as soon

as there is a query message in the buffer of a node and the node possesses

the queried file it responds to the search initiator with a query hit message.

The system counts the overall number of sent messages, the number of query

hit messages and calculates the deviation from the desired number of results.

Each simulation for each sample consists of 50 experiments, each experiment

takes 200 rounds (100 rounds for the probe and the standard search phase,

respectively). As a reference, we also include simulation results of Flood

Search, a TTL-constrained search algorithm similar to the one used in early

Gnutella implementations. We use a TTL = 7, which is the maximum value

the TTL field is allowed to have [22].

Figure 12.a shows the deviation from the number of desired results a user

wants (in our case 100 results). With increasing file popularity the Epidemic

Search is far closer to the number of desired results than Gnutella, meaning

that Gnutella still produces a considerable overhead when searching for pop-

ular files. The efficiency of Epidemic Search becomes more apparent when

compared to Flood Search in Figure 12.b: While the deviation of desired

results appears to stay almost constant in Epidemic Search, Flood Search

produces a linear increase of the result deviation. This clearly shows the ad-

vantage of the dynamic two-step process of Epidemic Search and DQP. For

42



(a) Gnutella vs. Epidemic Search (b) Flood Search vs. Epidemic Search

Figure 12: Comparison of the deviation from desired results (100) in
Gnutella, Flood Search and Epidemic Search, with a variable number of
files (items to search) in the network.

popular files, the flooding-based algorithm produces far more results a user

is ever likely to use.

Figure 13.a shows the overall number of sent messages of Epidemic Search

and Gnutella using the same simulation settings as in Figure 12. For popular

items again, Epidemic Search shows its supremacy. It needs significantly less

messages than Gnutella. The magnitude of savings of messages is even more

impressive in Figure 13.b, when compared to the sent messages of Flood

Search.

Figure 14.a shows the sent/received ratio of Gnutella and Epidemic Search.

The performance of both of the algorithms are very similar for popular files.

Epidemic Search exhibits a slightly higher sent/received ratio for rare files.

This is a wanted behavior, because the user is interested in actually retrieving

search results, if there are files in the network that match the user’s query.

It is therefore acceptable to send more search messages than Gnutella sends,

if the results are better and more search results are produced. This behavior

is confirmed by Figure 15. It compares the number of received search re-

sults produced by the Epidemic Search, Gnutella Search, and the ideal (i.e.,
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(a) Gnutella vs. Epidemic Search (b) Flood Search vs. Epidemic Search

Figure 13: Comparison of the sent messages in Gnutella, Flood Search and
Epidemic Search, with a variable number of files (items to search) in the
network.

(a) Gnutella vs. Epidemic Search (b) Flood Search vs. Epidemic Search

Figure 14: The sent/received message ratio in Gnutella, Flood Search and
Epidemic Search, with a variable number of files (items to search) in the
network.
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the maximum) number of search results. In this simulation we increase the

file distribution from 1 to 500 file replicas, in a system consisting of 10000

nodes. We use a probe reliability value of 99% for the Epidemic Search.

The obtained number of results are very close to the ideal in the case of the

Epidemic Search. The curve of the Gnutella Search confirms the results of

[29], who found that Gnutella fails to deliver reliable search results for rare

items.

Figure 15: Comparison of the number of search results of Epidemic Search,
Gnutella Search and the ideal (max.) number of search results, in a system
with a low file distribution [1,500], 20 experiments, nodes = 10000.

Figure 16 and Figure 17 show the number of sent messages and received

results as functions of the probe reliability. As a basis for these results

we lay the following assumptions and observations:

• The chosen value for the probe reliability parameter is vital for the

efficiency of the Epidemic Search algorithm.

• There is no optimal value of the probe reliability parameter that is

adequate for all kind of file popularities. A rare file needs a different

value for this parameter than a popular file.
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Figure 16: Number of sent messages in a system with low (50 files), medium
(200 files) and high (2000 files) file distribution. Desired number of results
= 50, nodes = 10000.

• We therefore need a scheme to decide how popular a file is, to appro-

priately choose the probe reliability parameter. We have described this

scheme in Section 4.1.

• We assume that in a real application a similar scheme is used to statis-

tically evaluate the popularity of a certain file, so an appropriate probe

reliability value can be chosen.

For the simulation we empirically set the probe reliability parameter. We

choose a low value for popular files, to minimize the overhead produced by a

query that reaches a too high number of hosts and by that returns a higher

number of results than needed. We choose a high probe reliability value for

rare files, to cover a high percentage of nodes for the probe query in order to

collect a statistically valid sample to reliably locate the few number of repli-

cas of rare files in the network. Figure 16 shows the overall number of sent

messages needed to receive the corresponding number of results in Figure 17,

in a 10000 host scenario, with a desired number of results equals 50, in a

Random Graph topology with 〈k = 30〉, a message time validity of t∗ = 100

rounds and a number of trials per sample of 20.
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Figure 17: Number of results in a system with low (50 files), medium (200
files) and high (2000 files) file distribution. Desired number of results = 50,
nodes = 10000.

Figure 17 shows that for rare files (low popularity) a probe reliability

equals 99 percent is needed to locate the desired number of results. It is im-

portant to note that the desired number of results in this scenario is equal to

the number of files in the network. The 48.4 number of average results over

20 trials, using a probe reliability value of 99 means an exhaustive search

result. Figure 17 also shows a needed probe reliability value of 17.5 percent

for a medium file popularity and a reliability value of 1 percent for a high

popularity. The number of messages needed for these results, as shown in

Figure 16, are 47805.45, 3594.45 and 321.15 for a low, medium and high file

popularity, respectively.

The results show that the Epidemic Search algorithm performs well and

is able to produce better results than even the highly optimized Dynamic

Query algorithm of Gnutella. While the Gnutella search algorithm is opti-

mized for the specific topology characteristic of the current Gnutella network,

our Epidemic Search algorithm is not restricted to any specific network char-

acteristic. It certainly works best in a highly connected Random Graph
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network, but due to its dynamic adaptation mechanisms it is also able to

handle less connected graphs and graphs with a very high or very low num-

ber of nodes. The results also suggest that the algorithm performs well in

heterogeneous networks, although there needs to be done more theoretical

and analytical work, until we can say for sure that our algorithm in its current

form universally works in homogeneous and heterogeneous networks.
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7 Conclusion and Future Work

In this work we have introduced an algorithm for epidemic-style information

dissemination, that relies on a probabilistic process for spreading informa-

tion. The mathematical model is founded on the work of [31], who use

complex network theory to fine-tune the epidemic information dissemination

in MANETs. We have characterized search algorithms in current P2P net-

works and have outlined their assets and drawbacks. We have characterized

homogeneous and heterogeneous networks and have given simulation results

of the Epidemic algorithm for both of them. We have implemented this algo-

rithm in the more wide-scale environment of P2P networks, using PeerSim, a

Java-based peer-two-peer simulator. Being inspired by the two-step process

of Gnutella’s Dynamic Query Protocol we have designed a search algorithm,

based on the probabilistic Epidemic algorithm. We have compared this algo-

rithm with Gnutella’s approach and with a flooding based search algorithm.

We also have given a characteristic of the network topology of Gnutella-like

P2P networks. As an evaluation, simulation results have been given for all

three search algorithms.

We have shown the superiority of the Epidemic Search algorithm over

Gnutella’s Dynamic Query Protocol. Due to the probabilistic model the al-

gorithm is based on, certain knowledge of the underlying network topology is

needed. Furthermore, if applied as a search algorithm in P2P networks, the

algorithm needs to know about the possible file popularity. This is global

knowledge a node can only retrieve by additional crawling techniques to

gather the required information. It is important to point out that the Epi-

demic Search algorithm only works well if knowledge about network topology

characteristics and file popularity is available. It may fail in reliably locating

rare files, if an insufficient probe reliability value is used or may produce

unwanted high overhead if a high probe reliability value is used for locating

popular files. [29] developed a bundle of schemes for discovering rare items

which could be published in their DHT-based search. A very simple scheme

is the Query Results Size. A parameter Results Size Threshold is used to
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decide whether a file is popular or not. If the number of results is below

this threshold, it gets published in the DHT. Because this scheme is used to

discover rare items, it suffers from the fact that many rare items may not

have been previously queried and found. We can exploit this simple scheme

for discovering popular items. If a query creates a number of results which

are above the results size threshold, a file is considered popular and a low

probe reliability value can be used for the probe query. This results in a low

percentage of hosts to reach that is sufficient to return the desired number of

search results and at the same time uses a low number of overall sent query

messages.

Further work needs to be done to better understand the characteristics

of heterogeneous networks and how they affect the behavior of the Epidemic

algorithm. Our empirical simulation results suggest that relaxing the as-

sumption of homogeneous networks by using a kMIN instead of a 〈k〉 might

result in a massive overestimation of the system and a flooding behavior.

We have found that using 〈k〉 in the calculation of the infectivity value gives

the better results. We do not fully understand by now, if this is due to the

topology characteristic of Scale-free networks in general, or because of the

specific implementation of PeerSim’s Barabasi-Albert (BA) model.

The simulation results for the Epidemic Search algorithm encourage us to

apply it in a running Gnutella-like P2P application, in the future. Therefore,

an unstructured P2P protocol similar to Gnutella, but with a timestamp

instead of a TTL field as an message expiry value, needs to be designed.

Crawling techniques for gathering network topology information and infor-

mation about file popularity need to be implemented. A reliable, highly

scalable and fast working search algorithm is not enough to make up a pop-

ular, user accepted P2P file-sharing application. Modern P2P applications

additionally consists of an easy-to-use user interface, multi-source download,

possible compression technologies to save bandwidth, integrated chat, en-

cryption, file metadata look-up and so forth.
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It would also be interesting to further investigate possible other areas

of application of the Epidemic Search algorithm. It should be possible to

successfully apply it wherever a simple to use and simple to apply search

algorithm is needed in network applications, provided there is exact or ap-

proximated knowledge of the network topology available.
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[14] Marc Barthélemy, Alain Barrat, Romualdo Pastor-Satorras, and Alessandro

Vespignani. Dynamic Patterns of Epidemic Outbreaks in Complex Heteroge-

neous Networks. Journal of Theoretical Biology, 2005.

[15] Bela Bollobas. Random Graphs. Cambridge University Press, Second edition,

2001.

52



[16] Cern. Colt - High Performance Scientific and Technical Computing in Java,

2004. http://dsd.lbl.gov/ hoschek/colt/.

[17] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott

Shenker. Making gnutella-like p2p systems scalable, 2003.

[18] Thomas M. Chen and Jean-Marc Robert. Worm Epidemics in High-Speed

Networks. IEEE Computer, pages 48–53, June 2004.

[19] Frank Dabek, Emma Brunskill, M. Frans Kaashoek, David Karger, Robert

Morris, Ion Stoica, and Hari Balakrishnan. Building Peer-to-Peer Systems

with Chord, a Distributed Lookup Service. pages 81–86, 2001.

[20] Alam Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott

Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic Al-

gorithms for Replicated Database Maintenance. ACM SIGOPS Operating

Systems Review, 22(1), January 1988.

[21] Patrick T. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, and Laurent

Massouli. Epidemic Information Dissemination in Distributed Systems. IEEE

Computer, May 2004.

[22] A. Fisk. Gnutella Dynamic Query Protocol v.0.1, 2003.

[23] Christos Gkantsidis, Milena Mihail, and Amin Saberi. Random Walks in

Peer-to-Peer Networks. IEEE Infocom, 2004.

[24] Oliver Heckmann and Axel Bock. The eDonkey 2000 Protocol. Technical Re-

port KOM-TR-08-2002, Multimedia Communications Lab, Darmstadt Uni-

versity of Technology, December 2002.

[25] Gian Paolo Jesi. PeerSim HowTo: Build a new Protocol for the PeerSim 1.0

Simulator, December 2005.

[26] Gian Paolo Jesi. PeerSim HowTo: Build a Topology Generator for the Peer-

Sim 1.0 Simulator, December 2005.

[27] David Karger, Eric Lehman, Tom Leighton, Mathhew Levine, Daniel Lewin,

and Rina Panigrahy. Consistent hashing and random trees: Distributed

caching protocols for relieving hot spots on the world wide web. In ACM

Symposium on Theory of Computing, pages 654–663, May 1997.

53



[28] Yoram Kulbak and Danny Bickson. The eMule Protocol Specification, 2005.

[29] Boon Thau Loo, Joseph M. Hellerstein, Ryan Huebsch, Scott Shenker, and Ion

Stoica. Enhancing P2P File-Sharing with an Internet-Scale Query Processor,

2004.

[30] Boon Thau Loo, Ryan Huebsch, Ion Stoica, and Joseph M. Hellerstein. The

Case for a Hybrid P2P Search Infrastructure, 2004.

[31] Mirco Musolesi and Cecilia Mascolo. Controlled Epidemic-style Data Dis-

semination in Mobile Ad Hoc Networks. Technical report, Department of

Computer Science, University College London, March 2005.

[32] J. Postel. User Datagram Protocol, 1980.

http://www.faqs.org/rfcs/rfc1320.html.

[33] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott

Shenker. A Scalable Content Addressable Network. Technical report, Berke-

ley, CA, 2000.

[34] R. Rivest. The MD4 Message-Digest Algorithm, 1992.

http://www.faqs.org/rfcs/rfc1320.html.

[35] Daniel Stutzbach and Reza Rejaie. Characterizing the Two-Tier Gnutella

Topology. Sigmetrics’05, June 2005.

[36] Daniel Stutzbach, Reza Rejaie, and Amir H. Rasti. On the long-term evolution

of the gnutella network. Technical report, University of Oregon, 2005.

[37] Daniel Stutzbach, Reza Rejaie, and Subhabrata Sen. Characterizing unstruc-

tured overlay topologies in modern P2P file-sharing systems. In Proceedings

of the ACM SIGCOMM Internet Measurement Conference, October 2005.

[38] Dimitrios Tsoumakos and Nick Roussopoulos. A Comparison of Peer-to-Peer

Search Methods. WebDB, 2003.

[39] Amin Vahdat and David Becker. Epidemic routing for Partially Connected

Ad Hoc Networks. Technical Report CS-2000-06, Dept. of Computer Science,

Duke University, 2000.

54



[40] Werner Vogels, Robert van Renesse, and Kenneth P. Birman. The Power

of Epidemics: Robust Communication for Large-Scale Distributed Systems.

ACM Computer Communication Review, 33(1):131–135, January 2003.

[41] Duncan J. Watts. Small Worlds: The Dynamics of Networks between Order

and Randomness. Princeton Studies on Complexity. Princeton University

Press, 1999.

[42] Lidia Yamamoto. Epidemic dissemination in ad hoc networks. In Matthias

Bossardt, Georg Carle, D. Hutchison, Hermann de Meer, and Bernhard

Plattner, editors, Service Management and Self-Organization in IP-based

Networks, number 04411 in Dagstuhl Seminar Proceedings. Internationales

Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl, Germany,

2005.

55



A Appendices

A.1 User Manual

This user manual is provided to enable users to run the simulation and to re-

produce the simulation results given in this work. The system is implemented

in PeerSim, and comes as an Eclipse project. Eclipse can be downloaded from

http://www.eclipse.org.

System Requirements: This simulation can be run on every system on which

PeerSim can be run. Please read the documentation on http://peersim.sourceforge.net/

if you encounter any problems. We used Java 1.5 to run the simulation, because

PeerSim 1.0 demands it. Our code is still compatible to Java 1.4.x.

Running the Simulator: The PeerSim simulator is run through the com-

mand java peersim.Simulator config-file.txt, where ’config-file.text’ needs

to point to an existing configuration file. We provide three configuration files

located in the folder conf. Source code 9 shows the configuration of the plain

Epidemic Algorithm. Every line that starts with an is a comment and not con-

sidered by the simulator. Important parameters to change are simulation.cycles

and simulation.experiments that specify the number of rounds one experiment

is running and the number of experiments a simulation consists of. network.size

specifies how many nodes the network consists of. init.0.k constrains the number

of links a node has in the network. init.1.reliability specifies the reliability pa-

rameter (i.e., the percentage of hosts the algorithm reaches). The value has to be

in the range of [0,1]. init.1.msgT imeV alid constrains, how many rounds the epi-

demic message is valid. To follow the conventions PeerSim is using, System.out

is redirected to a PrintStream. The class that derives from PrintStream, can

be specified via simulation.stdout. This is a convenient way to analyze the Sys-

tem.out stream and write it to a file, for example. Therefore, System.err is used

to print out the output of the simulation.

Source code 10 shows the configuration file of the Epidemic Search Algorithm.

protocol.1.msgT imeV alid specifies the time the query message is valid, in this

case. protocol.1.defaultProbeReliability specifies the reliability parameter that is

used to determine, how high the percentage of the hosts needs to be, to be reached
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by the probe query of the algorithm. protocol.1.defaultDesiredResults specifies,

how many results the algorithm aims to deliver. init.1.perc msg dist defines, how

many nodes of the network contain the search string, the algorithm searches for.

The value of the parameter specifies a percentage of hosts, and therefore has to

be between [0,100]. All the other parameters have the same semantic as in Source

code 9.

Source code 11 shows the configuration file of the Gnutella search algorithm.

Here, only the parameters init.1.percmsgdist and init.2.ttl are relevant parame-

ters. init.1.perc msg dist has the same semantic as in source code 10. init.2.ttl

specifies the TTL of the query message. It should be in the range [1,7].
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A.2 System Manual

This system manual is provided to enable developers to understand and extend our

work. We give an overview over the project- and package structure and describe

in short the functionality of the most important classes.

Project Structure: The project structure follows roughly the Sun project con-

ventions, which can be found on http://java.sun.com/blueprints/code/projectconventions.html.

The source code can be found in the package src. All classes used to implement

the different algorithms are in subpackages of hok. The plain Epidemic Algorithm

can be found in hok.p2p. It consists of EpDisseminationProtocol, a protocol

component representing a node of the network. It holds the message buffer and

the algorithm of disseminating a message to its neighbours. EpInitializer and

SFEpInitializer contain the algorithms of calculating the parameters used for

the dissemination process, which are then stored in the message. The former ini-

tializer is used together with Random Graphs, the latter can be used to adapt the

algorithm to Scale Free networks.

hok.epsearch contains classes for the Epidemic Search Algorithm. The ac-

tual search algorithm is implemented in DynamicEpQueryEngine, which is used by

the protocol class EpSearchProtocol. Initializer classes for initializing the query

message and the searched file distribution, and a observer class for collecting in-

formation complete the package.

hok.gnutella contains a portation of Gnutella’s Dynamic Query Protocol im-

plementation of PHEX [8]. The structure is very similar to hok.epsearch and

is used in a similar way. An additional initializer to use a flooding-based search

protocol is provided in GFloodSearchInitializer.

hok.msg contains classes that build the messages that are disseminated by

the algorithms. They are used by the Epidemic Search Algorithm and the plain

Epidemic Algorithm. The Gnutella implementation uses the simplified message

format of PHEX, which can be found in the package phex.msg.

hok.log contains PrintStream implementations to be used together with the

Observer classes in the various packages. Please find further information in the
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javadoc of the PrintStream classes.

The subfolder conf contains the configuration files, which specify which pro-

tocol, initializer and other controls components to use. Source code 9, 10, 11 show

the configuration we used for our simulations.

The subfolder doc contains the javadoc documentation, lib the needed addi-

tional libraries such as PeerSim and statData the simulation data and graphs.

The folder statData also contains scripts for GnuPlot to generate the graphs.
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A.3 Project Plan

Project Title: Epidemic Dissemination Approaches applied to
P2P Networks
Date:November 2005

Name: Holger Kampffmeyer

Supervisor: Cecilia Mascolo

Aim: Evaluation of epidemic dissemination algorithms based on mod-

els of epidemics spreading in complex networks.

This project will consist in the implementation of an epidemic dissemination

algorithm using the PeerSim simulator. The algorithm is based on models of

epidemics spreading in networks.

Language: Java

Related links: PeerSim Simulator webpages http://peersim.sourceforge.net/

Objectives:

• To understand epidemic information dissemination techniques.

• To gain knowledge about the epidemic model presented in [31].

• To understand PeerSim and to be able to implement own protocols.

• To develop a system that is able to evaluate the Epidemic Algorithm.

• To evaluate the implemented system.

Extended Objectives:

• To research current P2P search algorithms

• To develop the Epidemic Algorithm into a search algorithm

• To find a suitable P2P system that could gain from the Epidemic Search

Algorithm.

• To evaluate and compare the search algorithm with an state-of-the-art P2P

search algorithm.
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Expected Outcomes/Deliverables:

• An overview of current P2P applications

• A fully working, documented implementation of the Epidemic Algorithm in

PeerSim.

• A comprehensive outline of the theoretical background used in the project.

• A full evaluation using simulation results of all relevant parameters of the

implemented algorithms.

•
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A.4 Interim Report

Project Title: Epidemic Dissemination Approaches applied to
P2P Networks
Current Project Title: Improving Gnutella Search Algorithms
through Epidemic Dissemination
Date:February 2006

Name: Holger Kampffmeyer

Supervisor: Cecilia Mascolo

Abstract

Search algorithms in unstructured P2P networks such as Gnutella

use flooding-based techniques for communication and as a consequence,

they produce high message overhead. More dynamic algorithms such

as Gnutella’s Dynamic Query Protocol take into account the user’s

desired number of results and network topology properties to increase

scalability. However, these algorithms only work well for popular

files and often fail in locating rare content. Proposed structured

approaches such as DHTs are good in finding rare files, but due to

their significant overhead and problems with high network fluctua-

tions, they are not very applicable for finding popular content.

In this report, we propose a search algorithm based on epidemic-

style information dissemination techniques, that shows good perfor-

mances in finding both rare and popular files. It exploits the structure

of the underlying network and by that maximizes its search horizon

and minimizes the number of needed search messages. The presented

simulation results show that the search algorithm not only works well

in Gnutella-like networks, but would be also applicable in a much

broader context such as scale-free networks.

Progress to date:

• Reading on network theory

• Setup and get to know PeerSim, a java-written P2P network simulator
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• Understand epidemic information dissemination / the epidemic data dissem-

ination in MANETs work of Cecilia Mascolo

• Implementation of the Epidemic Algorithm in PeerSim

• Experiment with PeerSim, first diagrams

• Test different network topologies (random graph, scale free networks)

• Reading on P2P and Gnutella

• Understand the code and algorithms of PHEX, a java Gnutella client

• Porting of the Dynamic Search Algorithm of PHEX into PeerSim to compare

with EpidemicSearch

• Implement the EpidemicSearch in PeerSim

• Test/Evaluate/Compare the two Search Algorithms

• Produce further Diagrams

• Start writing thesis

• About 20 pages of thesis written so far

Further work to be done:

• Reading on network theory

• Finishing simulations

• Production of final diagrams

• Finishing writing thesis
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# PEERSIM

#random.seed 1234567890

simulation.cycles 100

simulation.experiments 1

simulation.stdout hok.log.EpObserverPrintStream

#control.shf Shuffle

network.size 10000

protocol.0 peersim.core.IdleProtocol

protocol.1 hok.p2p.EpDisseminationProtocol

protocol.1.linkable 0

protocol.1.buffer 1

#init.0 peersim.dynamics.WireKOut

#init.0 peersim.dynamics.WireScaleFreeDM

init.0 peersim.dynamics.WireScaleFreeBA

#init.0 peersim.dynamics.WireWS

#init.0.beta 0.5

init.0.undir true

init.0.protocol 0

init.0.k 15

init.1 hok.p2p.EpInitializer

#init.1 hok.p2p.SFEpInitializer

init.1.protocol 1

init.1.reliability 0.5

init.1.msgTimeValid 100

control.0 hok.p2p.EpObserver

control.0.protocol 1

control.1 hok.stats.EpObserverTopolDist

control.1.protocol 1

control.1.outf epFileDist

Source code 9: conf/config-file.txt.
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# PEERSIM

#random.seed 1234567890

simulation.cycles 200

simulation.experiments 1

simulation.stdout hok.log.EpSearchObserverPrintStream

control.shf Shuffle

network.size 10000

protocol.0 peersim.core.IdleProtocol

protocol.1 hok.epsearch.EPSearchProtocol

protocol.1.linkable 0

protocol.1.msgTimeValid 100

protocol.1.defaultProbeReliability 0.2

protocol.1.defaultDesiredResults 150

init.0 peersim.dynamics.WireKOut

#init.0.undir true

init.0.protocol 0

init.0.k 30

init.1 hok.epsearch.EPFileDistInitializer

init.1.protocol 1

init.1.perc_msg_dist 0.1

init.2 hok.epsearch.EPDynamicSearchInitializer

init.2.protocol 1

control.0 hok.epsearch.EPObserver

control.0.protocol 1

Source code 10: conf/ep-config.txt.
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# PEERSIM

#random.seed 1234567890

simulation.cycles 200

simulation.experiments 1

simulation.stdout hok.log.GnuObserverPrintStream

#control.shf Shuffle

network.size 10000

protocol.0 peersim.core.IdleProtocol

protocol.1 hok.gnutella.GnutellaProtocol

protocol.1.linkable 0

protocol.1.defaultDesiredResults 150

init.0 peersim.dynamics.WireKOut

#init.0 peersim.dynamics.WireScaleFreeBA

#init.0.undir true

init.0.protocol 0

init.0.k 30

init.1 hok.gnutella.GFileDistInitializer

init.1.protocol 1

init.1.perc_msg_dist 90

init.2 hok.gnutella.GDynamicSearchInitializer

#init.2 hok.gnutella.GFloodSearchInitializer

init.2.protocol 1

init.2.ttl 7

control.0 hok.gnutella.GObserver

control.0.protocol 1

Source code 11: conf/gnu-config.txt.
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